Digitalization-it, Industry-4-0-it, Pharma-4-0-it 3 Aprile 2024

Controllo del processo di rivestimento di forme granulari mediante spettroscopia NIR

processus d'enrobage des formes granulaires
Condividi post

Controllo del processo di rivestimento di forme granulari mediante spettroscopia NIR

Nell’industria farmaceutica esistono molte formulazioni granulari che vengono rivestite per ottenere un rilascio prolungato o controllato del farmaco o dell’ingrediente farmaceutico attivo (API) nel tempo; un esempio chiaro e noto è l’omeprazolo. In questo articolo discuteremo di queste formulazioni a rilascio prolungato e di come sia possibile ottimizzare il tempo di rilascio e le analisi di potenza durante il processo di rivestimento utilizzando la spettroscopia NIR.

processus d'enrobage des formes granulaires

Processo di pellettizzazione e analisi tradizionale

Durante il processo di pellettizzazione delle forme di dosaggio a rilascio modificato, la corretta applicazione del rivestimento (ad esempio un rivestimento a rilascio enterico destinato a prevenire la digestione o la degradazione gastrica) determinerà la successiva efficacia del farmaco e il tempo di rilascio mg/API del farmaco; pertanto, durante tutto il processo vengono effettuati controlli per garantire la qualità e quindi l’azione farmacologica attesa.

 

Attualmente, questo controllo viene effettuato durante il processo di rivestimento con campioni ottenuti dall’apparecchiatura di rivestimento in tempi diversi e analizzati in laboratorio utilizzando la tecnica analitica dell’HPLC o della cromatografia liquida e il test di dissoluzione per dimostrare che il rilascio del/i principio/i attivo/i è soddisfacente. Entrambi i metodi richiedono la preparazione del campione prima dell’analisi, richiedono personale specializzato e materiali di consumo (materiali), oltre alla durata (ore) di un test di dissoluzione, il cui obiettivo principale è quello di determinare la biodisponibilità del farmaco, ovvero la quantità relativa di farmaco che è entrata nella circolazione generale dopo la somministrazione e la velocità con cui questo accesso è avvenuto.

Pertanto, il problema principale dell’analitica tradizionale è che richiede molto tempo per ottenere i risultati e quindi non consente di correggere tempestivamente il processo di rivestimento in caso di insuccessi o, nel caso frequente di interruzione del processo per il campionamento, c’è il rischio di alterare la qualità del semiprodotto.

 

Uno strumento alternativo e molto efficace che consente di monitorare in tempo reale il processo di rivestimento è la tecnologia NIR, in quanto la firma spettrale di ciascun pellet può essere messa in relazione con le condizioni di rivestimento, il dosaggio e i tempi di rilascio senza dover ricorrere a metodi tradizionali.

Sviluppo di un metodo NIRS per la previsione del tempo di rilascio e della potenza

Per sviluppare un modello predittivo per la determinazione in tempo reale dei tempi di rilascio e della potenza (mg API/g pellet) rilasciata a 1, 4 e 7 ore, abbiamo lavorato in coordinamento con un importante laboratorio farmaceutico spagnolo e con l’analizzatore spettroscopico NIR portatile Visum Palm™ prodotto e commercializzato da IRIS Technology Solutions S.L.

I dati forniti dal laboratorio consistono negli spettri NIR di diversi lotti di due farmaci a base, da un lato, di un antistaminico che, per motivi di riservatezza, chiameremo “DS” e, dall’altro, di una forma di vitamina B6 che, per gli stessi motivi, chiameremo “PH”. In entrambi i casi, il principio attivo faceva parte del rivestimento dei pellet che costituiscono il veicolo.

Gli spettri dei pellet sono stati acquisiti in diversi momenti del processo di rivestimento, sia da campioni umidi che da campioni secchi e, parallelamente, il rispettivo campione è stato sottoposto alle analisi consuete in questi casi per determinare il rilascio del farmaco a 1, 4 e 7 ore e la potenza mg PI/g.

I modelli predittivi sviluppati sulla base dei dati spettrali hanno dimostrato che non è necessario asciugare i campioni per l’acquisizione degli spettri – quindi il controllo può essere eseguito direttamente sul campione umido, risparmiando tempo e manipolazione – e che esiste una chiara relazione tra gli spettri NIR, la potenza e i tempi di rilascio di 1h, 4h e 7h, come vedremo di seguito.

Composto PH

Tabella 1: Parametri qualitativi dei modelli di previsione per il rilascio a 1, 4, 7 ore e la potenza nei campioni con diverse fasi del processo di rivestimento PH. Il simbolo * indica che il modello è stato costruito utilizzando gli spettri NIR medi delle repliche di ciascun campione.

Figura 1: Curve di regressione per PH a) Tutti i campioni; b) Lotti 1,3,4 y 7; c) Spettri medi dei lotti 1,3,4 y 7; d) Lotto 7.

processo de revestimento de formas granulares

Composto DS

La Tabella 2 mostra i parametri di qualità dei modelli per l’analisi dei campioni di DS umido. Tutti i campioni sono stati studiati contemporaneamente: i campioni dei lotti 6, 8 e 10 insieme e il lotto 6 separatamente. I lotti 6, 8 e 10 sono stati scelti per lo studio di un insieme di lotti perché presentavano il maggior numero di campioni. Inoltre, il lotto 6 è stato scelto per l’analisi individuale in quanto conteneva il maggior numero di campioni con i parametri di rilascio ottimali per il caso di studio.

Tabella 2: Parametri qualitativi dei modelli di previsione per il rilascio a 1, 4, 7 ore e la potenza nei campioni con diverse fasi del processo di rivestimento DS.

La Figura 2 mostra le curve di regressione risultanti dallo studio per il principio attivo DS. I valori dei parametri di qualità per i modelli DS mostrano, in generale, una buona correlazione. Come osservazione, si nota che l’errore aumenta quando si utilizzano dati di lotti diversi, probabilmente perché le condizioni di processo di ciascun lotto sono diverse a causa del fatto che i dati provengono dalla fase di sviluppo e messa a punto del processo produttivo. La previsione del rilascio a 7 ore è peggiore di quella degli altri parametri, probabilmente perché in molti casi la fine del processo di rilascio è stata raggiunta prima di quel momento.

 

Figura 2: Curve di regressione per DS a) tutti i campioni; b) Lotti 6, 8 y 10; c) Spettri medi dei lotti 6, 8 y 10; d) Lotto 6.

Previsione di campioni secchi

Tabella 3: Parametri qualitativi dei modelli di previsione per i campioni secchi di DS lotto 6 e PH lotto 7.

I modelli di previsione dei campioni secchi per i singoli lotti di PH e DS mostrano una buona correlazione. Va notato che l’errore di previsione è dovuto ai pochi campioni di convalida utilizzati.

 

Figura 3: Curve di regressione per i campioni secchi di a) DS lotto 6 y b) PH lotto 7.

Processo di Rivestimento di Forme Granulari
processus d'enrobage des formes granulaires

Conclusioni

  • Esiste una chiara correlazione tra gli spettri NIR e i tempi di rilascio di 1h, 4h e 7h, nonché con la potenza, sia per DS che per PH, sebbene sia leggermente peggiore per PH.
  • Nel caso del rilascio a 7 ore, la correlazione sembra un po’ più debole, forse perché è vicino al rilascio massimo (al plateau di rilascio) o a causa delle differenze nel pH dei campioni.
  • Le diverse condizioni di produzione dei lotti influenzano la robustezza di questa correlazione, un fattore di variabilità intrinseco perché i campioni provengono dalla fase di sviluppo del processo produttivo (fase di messa a punto) e non dal metodo NIRS.
  • I test dei singoli lotti mostrano una buona correlazione sia per i campioni umidi che per quelli secchi. Poiché i risultati in entrambi i casi sono simili, si può concludere che l’essiccazione non è necessaria per correlare i parametri studiati (tempo di rilascio e potenza) con gli spettri NIR.
  • Infine, dall’analisi dei risultati analizzati, si può concludere che la spettroscopia NIR può essere utilizzata per ottimizzare il controllo del processo di rivestimento delle forme granulari e che, da un punto di vista tecnico, si tratta di un metodo robusto e basato sull’evidenza. Tuttavia, per tutti i casi valutati in questo documento, i modelli definitivi devono essere realizzati una volta che il processo di produzione è stato completamente sviluppato.
Di IRIS Technology Solutions

Analisi dei grani

La spettroscopia nel vicino infrarosso (NIR) è un prezioso strumento analitico per l’analisi in tempo reale della composizione chimica di un’ampia varietà di prodotti, compresi quelli di origine agricola. In questo articolo tratteremo l’applicazione della tecnologia NIR per l’analisi dei cereali e in particolare di due varietà di grano: tenero (Triticum aestivum) e duro (Triticum durum), nonché del mais giallo (Zea Mays).

Analisi dei cereali con tecnologia NIR continua o portatile

La qualità dei prodotti alimentari dipende direttamente dalla qualità delle materie prime utilizzate. Pertanto, la valutazione della loro composizione, purezza e caratteristiche fisico-chimiche è di interesse per l’industria alimentare.

Nell’analisi dei cereali, la spettroscopia NIR svolge un ruolo cruciale nel fornire informazioni dettagliate su diversi parametri simultaneamente; l’umidità è uno dei fattori critici nella valutazione della qualità dei cereali. Tuttavia, questa tecnica consente anche di analizzare altri parametri chiave come il contenuto di proteine, grassi, fibre, ceneri e amido, offrendo così un controllo più rigoroso secondo i criteri di qualità stabiliti.

La spettroscopia NIR si distingue dalle altre tecniche per la sua natura non distruttiva, il che significa che le misurazioni possono essere effettuate in modo continuo senza compromettere l’integrità del lotto o del campione in analisi. Inoltre, i risultati si ottengono in pochi secondi, semplificando l’analisi dei grani e i processi di controllo della qualità e consentendo di prendere decisioni immediate rispetto alle analisi convenzionali in chimica umida.

Di seguito verranno analizzati due modi per eseguire l’analisi NIR dei grani, sia completamente automatizzata e continua sulla linea di produzione, sia per mezzo di un analizzatore portatile, utile per l’analisi sul campo, nel magazzino di ricevimento delle materie prime o nei processi discontinui.

Analisi dei grani

Analisi dei cereali in continuo e in tempo reale: chicchi di grano e mais

Per sviluppare il modello di calibrazione dei grani è stato utilizzato un analizzatore continuo Visum NIR In-Line™ (900-1700 nm) e sono stati utilizzati 30 campioni di calibrazione e 7 campioni di convalida per ogni classe. Inoltre, sono state ottenute analisi di riferimento in doppio da ciascun campione per attenuare l’errore intrinseco del metodo primario di analisi. Per l’analisi dell’umidità è stato utilizzato un misuratore termogravimetrico di umidità HE53 (Metler Toledo), le proteine sono state determinate con il metodo Kjeldahl e il contenuto di grassi con il metodo Soxhlet.

La tabella seguente mostra i principali risultati e le cifre di merito del grano tenero (TB) e del grano duro (TD) per i parametri umidità e proteine espressi in % di sostanza secca. Inoltre, sono riportati anche i risultati relativi al grasso e all’umidità del mais giallo. È importante chiarire che la stessa calibrazione è utile e raggruppa entrambe le classi di grano in un’unica famiglia o metodo di analisi. Non sono state osservate differenze spettrali significative per i singoli trattamenti.

analysis nir of grains

* Tabella 1: Analisi di grano tenero, grano duro e mais giallo. Principali cifre di merito ottenute con l’ analizzatore continuoVisum NIR In-Line™.

L’analisi dei cereali con la spettroscopia NIR è importante anche nella produzione di mangimi per ottimizzare le diete e la resa. Nel settore agroalimentare, la tecnica NIR offre numerosi vantaggi rispetto ai metodi di chimica umida, soprattutto grazie all’immediatezza del risultato e alla possibilità di prendere decisioni tecnologiche in loco, tanto più se si considera l’introduzione di questi sistemi come l’analizzatore Visum NIR In-Line™ nelle linee di produzione che consentono un monitoraggio continuo dell’intero flusso di prodotto per garantire le condizioni ideali del processo e del prodotto, mitigando eventuali deviazioni con conseguenze fitosanitarie che possono compromettere la sicurezza di un intero lotto, per quanto riguarda l’umidità.

Un'alternativa NIR portatile per l'analisi dei cereali

In molte occasioni, soprattutto a causa delle condizioni e dell’ambiente in cui deve essere eseguita l’analisi dei cereali, può essere di grande utilità lavorare con un analizzatore di cereali NIR portatile come il Visum Palm™. Questo dispositivo, che opera nello stesso intervallo spettrale (900-1700 nm) dell’analizzatore continuo che abbiamo visto in precedenza, è in grado di determinare in meno di 3 secondi diversi parametri di interesse in tutti i tipi di grani, cereali e semi oleosi.

Alcuni dei suoi principali vantaggi, soprattutto per l’analisi dei cereali in campo, sono:

  • È un analizzatore autonomo (computer incorporato e touch screen). Non ha bisogno di essere collegato a nessun dispositivo esterno, tablet o smartphone per funzionare.
  • Ha un’area di misurazione del campione di 10 mm di diametro e un’illuminazione di 50 mm di diametro, che consente di attenuare le eterogeneità presenti e di ottenere più informazioni chimiche da ciascun campione.
  • A differenza della maggior parte degli analizzatori di grani NIR portatili presenti oggi sul mercato, ha una risoluzione spettrale di 3 nm o 256 pixel, cioè due o tre volte superiore, che consente di ottenere spettri, e quindi risultati, di elevata affidabilità e qualità.
  • Include librerie di fabbrica per diversi tipi di grana.
  • È supportato dal software esterno Visum Master™ per PC, in modo che l’utente finale possa sviluppare le proprie calibrazioni NIR ed estenderle in modo automatizzato e assistito dall’intelligenza artificiale. In questo modo, l’utente non dipende da librerie di terze parti e ha piena autonomia per rafforzare ed estendere le proprie calibrazioni per nuovi parametri o prodotti in base alle proprie esigenze attuali o future.

Ci auguriamo che questo articolo sull’analisi dei cereali con la tecnologia NIR vi sia stato utile. Per ulteriori informazioni, vi invitiamo a contattarci via e-mail all’indirizzo info@iris-eng.com.

Di IRIS Technology Solutions
Industry-4-0-it, Innovation-it 25 Gennaio 2024

Plastic identification, verification and classification using Visum Palm™

identificación, verificación y clasificación
Condividi post

Plastic identification, verification and classification using Visum Palm™

In this article we will address the problem of classification and plastic identification using the Visum Palm™ handheld NIR analyser as an agile, real-time and non-destructive technique useful in different processes, whether in the recycling of post-industrial plastic, in the analysis and classification of post-consumer plastic, in the identification of polymeric raw materials for their industrialisation, or even in areas of research and development of new plastic.

In all these cases, near infrared spectroscopy is presented as a valuable tool used for the characterisation of plastic compared to traditional methods of analysis.

Identification and sorting is important in plastic recycling and in manufacturing when using recycled plastic, as in both cases it must be ensured that the plastic materials are as pure and clean as possible because low levels of impurities can significantly affect the quality and performance of a recycled batch.

Although there are several portable NIR analyzers on the market, it is important to consider the spectral range that the equipment works with, the size of the measurement area (spectrum acquisition) and the spectral resolution (the quality of the spectrum obtained). The new Visum Palm™ analyser has a measuring area of 10 mm diameter, operates in the spectral range 900-1700 nm with a resolution of only 3 nm (↓ nm = ↑ spectral resolution). It is a self-contained device with an embedded computer and touchscreen and therefore does not need to be connected to a computer or smartphone to work with it.

Análise de forragens e espectroscopia nir

The new Visum Palm™, which includes a polymers library, allows readings and determinations to be made at the line without the need for sample preparation in less than 3 seconds. It is also possible to use it as a laboratory device as it has a support base that allows the attachment of different sample holders for the analysis of pellets, flakes or plastic up to 2 mm.

The factory library included in the analyser has the following classes: PMMA, PE, PC, PETG, EVA, PVC, PET, PU, PS, ABS, PA, PP, VIN, PLA, PBT, PMP, POMC, PPS, PVA, PPSU, EMA, PHBV, PAEK, PBAT, PBS, TPES, TPS, MABS, HIPS, MBS, SBC, PCL, PEEK, PHB, SAN, PI, PB.

Extend and develop your own library with Visum Master™

Visum Master™ is a computer software that allows the end user to create, extend and strengthen their own identification, classification and quantification methods or libraries without the need for a specialist or technical knowledge of spectroscopy, making the analyser a truly open system to meet present and future analysis needs (new polymer classes, new suppliers, etc.).

As shown below, it is possible to incorporate spectra of new samples within an existing class or to incorporate new classes and thus keep the library as robust and up-to-date as possible in order to be able to classify or identify plastic.

plastics

Plastic identification

It is a working method that allows the plastic identification analysed within the library available in the analyser. The result obtained, as can be seen below, is the type of polymer with the highest similarity and the following (from highest to lowest similarity).

Image 1: Visum Palm™ screen performing plastic identification

identification of polymers polymers identification

Polymer Verification

As with plastic identification, it is based on a mathematical procedure of similarity but it allows choosing a type of material to be analysed within the identification library to confirm its identity. The result of the verification analysis is PASS / FAIL. In case of a negative result (FAIL), it provides the class corresponding to the type of plastic analysed. Both cases are shown below.

polymers_identification

Plastic classification

In contrast to plastic identification analysis, classification uses machine learning algorithms to accurately analyse and classify samples that are spectrally very similar to each other, where a double check is necessary to determine the polymer class (PET/PETG, for example). Through the Visum Master™ software, the user can create his own classification libraries for the most problematic cases.

As a result of the analysis, the user obtains the corresponding class.

In conclusion, NIR spectroscopy is a very valuable and effective tool for plastic identification or classification and, although not covered in this article, it is also useful for manufacturers of plastic and new formulations to quantify blends. The open nature of the analyser through the Visum Master™ software makes the Visum Palm™ analyser an open, self-contained system that can continuously introduce new samples, spectra and generate different libraries without the need for a specialist.

Di IRIS Technology Solutions
Industry-4-0-it, Innovation-it 10 Ottobre 2023

IRIS Technology Solutions at Alimentaria FoodTech 2023

foodte
Condividi post

IRIS Technology Solutions at Alimentaria FoodTech 2023

At the end of September, IRIS Technology Solutions presented at Alimentaria FoodTech trade show 2023 Barcelona the various real-time quality and process control solutions for the industry that the Catalan company manufactures and markets under the Visum® brand.

Alimentaria-FoodTech is the machinery, technology and ingredients show that integrates the food processing and preservation value chain. It is a transversal fair that serves the food and beverage production industry from raw materials to commercial distribution.

Visum® Solutions

Visum® solutions optimize and digitize quality control on different production lines. They operate on the basis of NIR, Raman, Hyperspectral and Machine Vision spectroscopy, providing real-time information for decision making and rectification of production processes. In addition, trade show participants were able to see first-hand the new Visum Palm™ handheld NIR analyser.

The new Visum Palm™ analyzer has an innovative and ergonomic design, as well as the possibility to perform analysis at any time and place without the need to connect it to any external electronic device. This is possible because it incorporates an embedded touch screen and computer, which allow all the routine functionalities of the device.

In addition, it has the Visum Master™, this software, unlike the most common modeling and calibration software on the market, with which the user has to have certain technical knowledge about chemometrics or entrust such a task to a third party.

It allows to perform calibrations in an automated and agile way only by incorporating spectra and references (quantitative or qualitative), in addition to other functionalities.

Shealthy Project

shealthy

IRIS Technology Solutions has also presented at FoodTech the European SHEALTHY project, which seeks to evaluate and develop an optimal combination of non-thermal sanitization, preservation and stabilization methods to improve safety (inactivation of pathogens and spoilage microorganisms) while preserving nutritional quality (up to 30%) and extending shelf life (up to 50%) of F&V products. By combining and modulating non-thermal technologies with minimal processing operations, SHEALTHY’s approach will finally be able to meet today’s growing consumer demand for healthy food.

Di IRIS Technology Solutions
Ai-it, Digitalization-it, Industry-4-0-it, Innovation-it, Pharma-4-0-it 5 Settembre 2023

New Visum Palm™ AI-assisted handheld NIR analyser

handheld nir analyser
Condividi post

New Visum Palm™ AI-assisted handheld NIR analyser

IRIS Technology Solutions introduces the latest version of its Visum Palm™ portable NIR analyser to complement its Visum® range of real-time process analysers for industry.

The new Visum Palm™ is a fully portable NIR spectrophotometer that allows real-time analysis of different substances, products or mixtures, without the need for traditional laboratory and sampling techniques, allowing industry to obtain results on the spot to make decisions or correct production process parameters.

The new generation Visum Palm™ brings with it an innovative design and a radical change in the way users experience NIR technology, now assisted by AI with the Visum Master™ software, so that each manufacturer can automatically create their own predictive models or calibrations according to their control and analysis needs.

 

Design, autonomy and robustness

The Visum Palm™ analyser offers an innovative and ergonomic design, as well as the possibility to perform analysis at any time and place without having to connect it to any external electronic device. This is possible because it incorporates an embedded touch screen and computer, which enable all the routine functionalities of the device.

The Visum Palm™ operates in the 900 to 1700 nm range, as this is the band that best combines availability of chemical information with price and technological maturity. It operates mainly in diffuse reflectance mode, for which it has specially designed and patented optics to extract as much information as possible from the sample. Specifically, it has a large illumination area (50 mm diameter) and a collection area of 10 mm. These features differentiate it from similar analysers in terms of its suitability for analysing heterogeneous samples, which is most often the case in real working conditions. In cases where heterogeneity is more evident, the device is configurable to calculate and report the average of a given number of repetitions.

The Visum Palm™ analyser is IP65 compliant, making it resistant to dust, moisture and water. It is also rugged enough to be carried and tested almost anywhere indoors or outdoors and even comes with a stand for desktop or tabletop use.

 

A new AI-assisted user experience

Unlike most common modelling and calibration software on the market, which requires the user to have some technical knowledge of chemometrics or entrust the task to a third party, Visum Master™ PC-based software makes NIR technology even more accessible by automating pre-processing, multivariate analysis algorithm selection and validation. This allows any user to generate models by simply inputting spectra and references (quantitative or qualitative) for routine real-time analysis to replace traditional analysis.

visum_master

The new software also allows to extend and edit pre-existing models, synchronise with the portable analyser to import spectra, export models, download measurement results, automatically generate analytical method validation reports and audit reports for GMP environments, and to check the metrological performance of the device in a guided manner when needed.

 

For industry and GMP environments

While NIR technology has a myriad of applications in numerous industries such as plastics, food, chemical, agribusiness, wood, biofuels, to mention the most relevant but not the only ones; it is for the pharmaceutical industry and GMP environments where the new Visum Palm™ device introduces significant novelties at the level of usability and functionality. It is 21 CFR Part 11 compliant, allowing the generation and display of an automatic Audit Trail report, the record of all device activity, where comments and observations can be incorporated. It also allows the user to automatically generate the analytical method validations developed and perform metrological checks of the device when required and download the results at a later date.

“NIR technology today must be easy to use and understand, and at the same time it must give the user the freedom and autonomy to exploit it to the full and facilitate their day-to-day work. Technology must be an enabler. We will continue to take further steps in terms of automation and new functionalities because we are convinced that this is the right way forward and what the industry and the people in it need”, says Oonagh Mc Nerney, Director of IRIS Technology Solutions, S.L.

 

The new Visum Palm™ handheld NIR analyser is now available here, where you can also find technical information about the device, videos and contact IRIS Technology Solutions, S.L. for a demonstration or specific enquiry.

 

Di IRIS Technology Solutions
Digitalization-it, Industry-4-0-it 1 Giugno 2023

IRIS Technology presents its solutions at Expoquimia 2023

expoquimia
Condividi post

IRIS Technology solutions at Expoquimia 2023

Barcelona – 1 June 2023 – Today, the director of IRIS Technology, Joan Puig, presented at Expoquimia 2023 the different real-time quality and process control solutions for industry that the Catalan company manufactures and markets under the Visum® brand. Expoquimia is the main meeting of the chemical industry to highlight the strategic importance of the transformation of the industry towards more energy-efficient production models and circular economy criteria.

Visum® solutions make it possible to optimise and digitise quality control on different production lines. They operate on the basis of NIR, Raman, Hyperspectral and Machine Vision spectroscopy, providing real-time information for decision making and rectification of production processes. “IRIS Technology is developing and improving its portfolio of products and solutions, and at the same time opening new export markets such as Latin America. We continue to invest in R&D and we are the Spanish SME with the most projects in this field within the European Union,” said Joan Puig during his presentation at the event.

IRIS has participated in Expoquimia by invitation of the Agency for Business Competitiveness of the Generalitat de Catalunya (ACCIÓ).

 

IRIS would like to thank all the people who attended the presentation and ACCIÓ for inviting and giving IRIS a new opportunity to present its Visum® devices with solutions for the chemical and plastic sectors.

For further information on IRIS developments, we invite you to contact us via the following email address: info@iris-eng.com.

Di IRIS Technology Solutions
Industry-4-0-it 5 Aprile 2023

Raw material identification and analysis (RMID) using the Visum Palm™ handheld NIR analyser assisted by AI

raw-material-pharmaceuticals
Condividi post

Raw material identification and analysis (RMID) using the Visum Palm™ handheld NIR analyser assisted by AI

The raw materials identification and analysis (RMID) is a critical process in the pharmaceutical industry because it guarantees the identity and quality of all materials and substances to be used in the manufacturing process to ensure that they meet the specifications that the final products require to reach the consumer with the pharmacological characteristics for which they were designed.

In terms of raw material identification and analysis, both Raman and NIR are complementary techniques and neither represents a final or definitive solution due to the large number of materials, substances and casuistries involved. For example, handheld Raman analysers are sensitive to certain substances that emit fluorescence and are not the appropriate technique for moisture determination (LoD) to replace the Karl Fischer method or for the determination of the average particle size, where NIR spectroscopy is effective and at a lower cost.

Rohstoffanalyse

Figure 1: Handheld NIR analyser Visum Palm™ handheld or desktop.

Raw material identification and analysis in the pharmaceutical industry

The Visum Palm™ handheld NIR analyser is a self-contained spectrophotometer with embedded computer and touch screen that operates in the 900-1700 nm range useful for the pharmaceutical raw materials identification, verification and classification and has a spectral resolution of 256 pixels, a measuring area of 10 mm in diameter and an illumination area of 50 mm, which allows more chemical information to be obtained from the sample analysed and makes it less sensitive than other spectrophotometers to heterogeneities, even those derived from the particle size for substances that are very similar. The analyser has an illumination system that fires a large amount of light at the sample and a collection system that takes advantage of the larger amount of scattered light due to scattering, which is especially important when working with powdery substances.

analisis de materia prima analisis de materia prima

Figure 2: Visum Palm™ performing pharmaceutical raw material identification.

 

Among its particularities, it is the only NIR analyser on the market with AI-assisted software that allows any user, without specific technical knowledge in spectroscopy or multivariate data analysis, to develop their own NIRS libraries and methods and to edit them iteratively according to their needs, for example, to incorporate new substances or to strengthen a class with samples from a new supplier.

The Visum Master™ software in its GMP version has been specifically designed in compliance with the European Medicines Agency “Guideline on the use of near infrared spectroscopy by the pharmaceutical industry and the data requirements for new submissions and variations” (2014) and the Addendum “Defining the Scope of an NIRS Procedure” (2023). It is also compatible with FDA regulation 21 CFR Part 11.

Figure 3: Visum Master™ GMP version software for pharmaceutical users.

Identification, verification and classification

The Visum Palm™ analyser allows the raw material identification or verification analysis of different substances to be carried out in seconds by comparing the spectrum acquired from the sample with the average typical spectrum of each substance in the library. This comparison is made on the basis of a mathematical criterion of similarity, which converts the differences into a numerical value. As a result of the raw material analysis, the Visum Palm™ analyser provides the class with the highest similarity obtained (Figure 3) and lists the other substances in order of highest to lowest similarity.

Unlike the identification analysis, which is agnostic to the material to be inspected, the verification analysis (Figure 4) allows the user to select a specific substance within the library to confirm its identity. The result is either PASS or FAIL and, in the latter case, also indicates the correct and most similar substance.

identification_verification

Figure 4: Raw material identification                                                                   Figure 5: Verification PASS/FAIL

Classification analysis

In contrast to the above, for feedstock analysis, classification (Figure 5) is a function that uses machine learning algorithms, not similarity algorithms, and allows to properly distinguish (classify) very subtle spectral differences, such as particle size or concentration of a particular analyte, even if they are the same API or excipient. It is a very useful function to identify anomalies in the raw material or to perform a confirmation of the identification analysis in problematic or doubtful cases where the substances are spectrally very similar, thus complementing the identification or verification analysis mentioned above.

In all the above cases, in addition to the result, the spectrum of the analysed substance is obtained for each measurement (Figure 6).

pharma classification pharma absorbance

Figure 6: Classification analysis                             Figure 7: Spectrum of each measurement

NIRS method generation: advantages of automation for raw material identification and analysis

Visum Palm™ is the only NIR analyser on the market that allows end users to develop their own NIRS libraries or methods for identification, classification and quantification without the intermediary of technicians or specialists. Let’s see graphically below how existing market software for multivariate data analysis – or also called chemometrics – for NIRS method development and calibration differs from IRIS Technology Solutions’ Visum Master™ software.

Identification et analyse des matières premières

Figure 8: (Left) Chemometrics software for method development and NIRS calibrations. (Right) Development of NIRS methods for identification, classification and quantification with Visum Master™ software.

The above is a graphical example to quickly differentiate how Visum Master™ simplifies a large number of scientific and technological tasks that until now had to be performed by chemometrics experts or specialists during the development phase of a NIRS method. Moreover, the software makes it accessible to any analyst to autonomously perform these tasks and edit the created methods when necessary, making the Visum Palm™ NIR analyser an open system that can cover different analytical needs with proper user training, thus radically changing the accessibility and usability of the NIR technique in the industry.

The Visum Master™ software automatically generates a large number of successive predictive models by applying each time a certain combination of pre-treatments, algorithms and parameterisations. In all cases, it chooses the one with the lowest RMSE and risk of overfitting. It also automatically runs a spectral quality test to identify and remove spectral outliers, i.e. those spectra considered atypical in relation to a predefined range of variation for each class or value, and automatically produces a report of the developed NIRS method with all the technical information on how the model was generated, a document especially useful for external validation of a quantitative NIRS method for release and as supporting documentation for audits.

Development and edition of an raw material identification/verification or classification library

To generate a library or identification raw material method for raw material analysis (analogue for classification and quantification), it is only necessary to import the acquired spectra of each substance or calibration sample and enter its reference value, name or class. At the end of the data upload, Visum Master™ will generate the library automatically.

It is also possible to edit and iteratively strengthen the library to incorporate new substances or sample spectra from a new supplier. For each edition, a new version (v1, v2, …) is generated as a backup copy of the changes made. At the end of the process, the NIRS library or methods are exported to the Visum Palm™ portable analyser for use in the routine raw material identification, classification and quantification.

vms identification model

Figure 9:  (left)Development of a NIRS raw material identification or classification method or library.     (right).  Edit raw material identification or classification library. Add new spectra to an existing class or add a new one and its reference (name or class).

Conclusions

Raw material identification and qualification is an essential step in any GMP environment and unlike other technologies, the NIRS technique can identify and classify materials or substances or quantify different analytes of interest, thus reducing the workload in the laboratory or raw material receiving warehouse.

Visum Palm™ offers a unique value unlike any other device on the market in that the creation or editing of NIRS libraries and methods is automated and can be performed without specific knowledge of chemometrics, although it has an “Expert Mode” for advanced users that allows the choice of preprocessing and algorithms during the method generation phase and is activated by licence. It also has the differential of offering automated reports that facilitate the work of any analyst vis-à-vis potential auditors in terms of supporting documentation and external validation of the NIRS method used, even for release.

 

Visum Palm™ offers the following advantages:

  • It is useful for the identification and qualification of materials, including fluorescent materials, which cannot be analysed by Raman spectroscopy.
  • In addition to identification raw material analysis it can perform quantitative analysis, e.g. to replace Karl Fischer (LoD) analysis on raw materials.
  • It is a self-contained analyser with embedded computer and touch screen and does not require connection to other electronic devices.
  • It has a spectral resolution of 3 nm or 256 pixels, a measuring area of 10 mm diameter and a sample illumination area of 50 mm. Its high spectral resolution is very similar to that of laboratory NIRS devices.
  • It can be used as a handheld or benchtop analyser.
  • It allows customised reports of measurement results in tabular form, comparison of spectra (for raw materials) and incorporation of the company logo.
  • It is also capable of automatically generating NIRS libraries or methods and downloading reports for each of them. The Visum Master™ software in its GMP version also allows the possibility to generate the operational qualifications of the device through a guided wizard and an Audit Trail report with all the information about the use of the device in compliance with 21 CFR Part 11.
Di IRIS Technology Solutions

Forage and feed analysis with NIR spectroscopy

NIR spectroscopy is a powerful analytical method to determine in real time the chemical composition of a wide variety of materials and mixtures. In this article we will discuss some applications of near infrared spectroscopy ranging from the analysis of forage to the feed analysis, its manufacturing process and finished products for animal feed and nutrition.

NIR analysis of alfalfa

Alfalfa is a legume that is grown all over the world because of its high protein content and rapid digestibility for animal feed, mainly for livestock. Nowadays, due to the nature of the primary activity itself, various controls are carried out to determine the quality of the product, especially for export to the Chinese and Persian Gulf markets. One of the main parameters determining the quality of alfalfa is crude protein (CP), but other parameters such as acid detergent fibre (ADF) and neutral detergent fibre (NDF) determine the nutritional value of the fodder and the terms of trade in its commercialisation.

analisis de forrajes

Table 1. Quality of alfalfa (less than 10% grasses) for marketable forage according to USDA Livestock, Hay & Grain Market News (Putnam and Undersander, 2006).

feed analysis

Feed analysis with NIR spectroscopy

Análise de forragens

NIR spectroscopy and animal nutrition

In conclusion, the use of real-time NIR spectroscopy is becoming more and more widespread in the animal feed sector and particularly in feed analysis, applications which are now extending to the introduction of this technology online for the monitoring of the entire manufacturing process.

Di IRIS Technology Solutions
Industry-4-0-it 20 Dicembre 2022

NIR Chocolate Analysis: Viscosity and Particle Size in Real-Time

Espectroscopía NIR en la producción de chocolate
Condividi post

NIR chocolate analysis: NIR spectroscopy applications in chocolate production

 

In this article we will address real-time NIR chocolate analysis using NIR spectroscopy for the determination of viscosity and particle size, two key product parameters to ensure the highest quality and unique smoothness and taste that make chocolate such a popular food among consumers.

 

NIR spectroscopy (Near Infrared Spectroscopy) is an analytical technique for determining the chemical composition and certain physical properties of various materials and products based on the analysis of the interaction of optical radiation (light) with the molecular and atomic structures of these materials. NIR is therefore a widespread technique for physical-chemical control in industry, both in laboratory and real-time process analyzers.

 

In chocolate production, the particle size and composition of the ingredients play a fundamental role in shaping their rheological behavior and sensory perception. The flow properties of chocolate are important because product quality control is a necessity. If the viscosity is too low, the weight of the chocolate on the coated candy will also be too low. When it is too high, bubbles may form inside the chocolate bar. In addition, the taste of the chocolate in the mouth is affected by the viscosity; therefore, the consumer’s tongue may perceive incorrect flow properties. Furthermore, the perceived taste depends on the order and speed of contact, which are related to viscosity and melting speed.

 

Why does the viscosity have to be right?

 

  • It guarantees the texture, flavor and quality of the chocolate.
  • It provides a uniform flow speed (homogeneity), which is very important if there are coatings of nuts, almonds, cookies or others on the chocolate bars.
  • Reduces typical defects and processing errors (breaks, cracks and others).
  • Mitigates the inherent variability in the line, thus reducing raw material and viscosity modifying ingredients costs.

 

However, up to now, most of the industry performs a traditional control, either with temperature measurements and adjustments -which we will not discuss in this article-, sampling and laboratory analysis, a viscometer or other monoparametric sensors.

 

Unlike the above, IRIS Technology’s Visum® process analyzers are multi-parametric and provide the added value of monitoring the entire product flow and reporting directly to the control systems or PLC of the area to generate the necessary corrections in the process, thus ensuring the highest possible homogeneity at all times.

 

NIR chocolate analysis in the production process

 

The chocolate production process consists of four main stages: mixing, refining, conching and tempering.

The conching process (dry, plastic and liquid) is one of the most critical and important in chocolate production, where the mixture becomes a fluid liquid and where acidic flavors are eliminated and the cocoa paste is refined to the desired texture and flavor. This structural transition is achieved through the use of thermal and mechanical energy and the incorporation of different ingredients that break up, disintegrate and disperse the large agglomerates until the molten chocolate is obtained.

 

In this process, a Visum NIR In-Line™ multiparametric analyzer was used for the on-line determination of viscosity in the range 2000-16000 cps and where an R2 >0.96 was obtained. In addition, its results were correlated with in-line moisture measurements since an increase in the moisture content of chocolate leads to an increase in its viscosity and an excess of moisture could lead to the formation of sugar agglomerates thus affecting the final texture of the chocolate. NIR is a particularly sensitive method for moisture determination.

 

Picture 1: Visum NIR In-Line™ Analyser – Conching process monitoring.

Espectroscopía NIR en la producción de chocolate

While this application was developed on milk chocolate, one would expect that no major differences in compositional changes would be found.

A limitation of the Visum NIR In-Line™ process analyzer is that it does not provide the particle size distribution but the average value resulting from continuous analysis every few seconds. In the case of milk chocolate, a range of 0 to 160 µm was monitored and a correlation coefficient of 0.92 was obtained.

 

Table 1: Particle size and viscosity with NIR. NIR chocolate analysis

 

Once the chocolate is properly cooked, it must be tempered and this stage consists of crystallizing a small proportion of the fat, which facilitates its proper solidification after molding. Tempering consists of several stages: first, the chocolate is completely melted (usually at 50⁰C), then cooled to the crystallization point (32-34⁰C), then the temperature is further reduced until crystallization occurs (25-27⁰C) and finally, the chocolate is subjected to a temperature increase to destroy any of the unstable crystals (29-32⁰C). Although a detailed analysis was not performed due to the lack of samples at the different tempering stages and the difficulty of obtaining them for the calibration of the predictive model, the image below validates on-line infrared spectroscopy as a reliable method for the determination of the tempering level.

 

Figure 1: “Tempered” “Untempered” classification by infrared spectroscopy – Exploratory NIR chocolate analysis.

NIR spectroscopy in chocolate production

 

These tests open a development window to further develop a classificatory and/or quantitative model capable of determining, by means of dedicated machine learning tools, the tempering level of chocolate in real time without having to resort to an offline method such as the temperature meters (tempermeter) commonly used in the industry.

 

We hope you found this article on new applications of NIR chocolate analysis useful. For further information, we invite you to contact us by email at info@iris-eng.com.

Di IRIS Technology Solutions
Environment-it, Industry-4-0-it, Innovation-it 15 Dicembre 2022

Recycling of multilayer and composite plastics

Reciclaje de plásticos multicapa
Condividi post

Plastics bring value as convenient, versatile and lightweight consumer products, as well as advanced performance in high-end applications such as automobiles. However, despite their usefulness, it is clear that linear, single-use consumption of plastics is incompatible with Europe’s transition to a circular economy. This model prioritises the reuse and recycling of resources, with the aim of reducing waste and retaining as much value as possible.

In terms of plastics recycling, some progress has been made. For example, 41.5% of the plastic packaging waste generated was recycled in 2018. This is still not enough to achieve full circularity, especially in the recycling of multilayer plastics that are difficult to separate. In addition, it is essential that recycling technologies keep up with new materials entering the market

Advanced plastics recycling

The EU-funded MultiCycle project aims to develop a pilot plant for industrial recycling and treatment of multilayer plastics. This plant focuses on two important industrial segments that pose a challenge for recyclers: multilayer packaging/flexible films and fibre-reinforced thermoplastic composites of the type used in the automotive sector.

Technology selection

NIR and HSI-NIR are the techniques conventionally used for container sorting. The former is suitable for individual pieces of packaging prior to shredding and can also provide an initial assessment of suitability before moving on to the latter, which provides a mode of imaging. In the MultiCycle project, packaging materials were fed onto a conveyor in the form of flakes up to 5 cm and therefore HSI was the target technique for final implementation in the prototype incoming control system. However, point NIR spectroscopy was the target technique used for monitoring dissolved and recovered plastics during and after the CreaSolv® process, where no imaging capability is required. Complementary techniques such as LIBS and FTIR have also been preliminarily tested to detect other fractions such as AlOx or to enable the detection of black containers, which could improve the accuracy of monitoring when a full system is implemented.

Near Infrared Spectroscopy (NIRS)

NIR spectroscopy is a vibrational spectroscopic technique. In this region, absorption spectra are composed of overtones and combination bands with respect to the fundamental modes of molecules in the mid-infrared region. NIR radiation has a wavelength range of 900 to 2500 nm. The absorption bands in this region are broad, due to the high degree of band overlap. In addition, due to the selection rules of the phenomena, the signal intensity is ten to a thousand times weaker than signals in the mid-infrared region. However, this lack of intensity and the high band overlap is compensated by its high specificity. The specificity of NIR spectroscopy is based on the fact that NH, OH and CH bonds strongly absorb radiation at these wavelengths, which makes it an optimal tool for the study of organic compounds and polymers. In addition, the use of multivariate methods for the analysis of spectral data has made it possible to exploit the full potential of the technique for identification, discrimination, classification and quantification purposes.

Hyperspectral imaging system in the shortwave infrared region (HSI-SWIR)

Current technologies for the monitoring and classification of solid plastic waste in the near-infrared region have incorporated hyperspectral cameras in their configuration. They allow, instead of collecting a single spectrum, to record a hyperspectral image (HSI) of the sample (hyperspectral cube), which contains not only the spatial location of the sample, but also its chemical composition and distribution. In this regard, several publications and technological developments have been made using HSI-SWIR for the classification and identification of plastics.

A basic hyperspectral imaging system, shown in Fig.3, includes in its configuration, a sensitive sensor (CCD camera); a broadband illumination source; a spectrometer, which separates the backscattered/transmitted light into its different wavelengths and, when required, a conveyor belt for sampling. In this case, it should be noted that the conveyor belt must be synchronised with the recording speed of the CCD sensor for proper image acquisition. A hyperspectral system provides a hypercube as output. A hypercube is a set of data arranged in three dimensions, two spatial (an XY plane) and one spectral (𝜆, wavelength), as depicted below.

Measurement parameters:

The most relevant parameters for hyperspectral cube recording can be summarised as follows:

  • Camera frame rate (fps)
  • Transporter speed (m/s)
  • Camera-transporter distance (cm) and collection time (µs). These parameters are interrelated and must be optimised to obtain good quality recorded spectra.

The hyperspectral images were recorded with a SWIR camera operating in the range ∼900-1700 nm, at a frame rate of 214 fps, with an integration time of 350𝜇s and a transporter speed of 25m/min.

Reciclaje de plásticos multicapa

Figure 1: (Left) Sample set no. 1. Includes flexible plastic films of PE, PP, PA and PET. Single and double combinations of these polymers (i.e. polymer A/polymer B) were included. (Right) Classification image made by a PLSDA model.

Project conclusions

The HSI monitoring system has been able to provide a good approximation of the percentage of polymer content in a multilayer polymer sample. In the worst case, the most abundant polymer present in the sample is predicted, so with large batches, the final percentages would be fairly accurate. In terms of monitoring the dissolution process, only 1 polymer and 1 solvent were provided for testing in IRIS. The results obtained with Visum Palm™ were as expected, but no process models were tested over time. The dissolution control was not performed due to problems with the viscometer installed in LOEMI. For this reason, there are no further results in this section.

For the monitoring of the automotive samples, the selected technique was LIBS. The optimisation of LIBS was complicated, as it was the first time it was used. Models were run by changing different parameters to select the best conditions. The PATbox tool for LIBS did not allow data acquisition at the same speed as the LIBS software, so the models had to be modified. Finally, the models were calibrated and tested to predict the type of fibres in the black plastics PP and PA. The results obtained in the 3 batches were satisfactory, as the predictions given by the models (chemometrics and machine learning) were close to the real content. Some tests were performed to differentiate between PP and PA, but the classification rate was around 80% of good predictions. In general, mislabelling and soiling of the samples were not very useful for the development of the prediction models.

Di IRIS Technology Solutions